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Conclusion
Symbioses, Biocomplexity,
and Metagenomes

Fernando E. Vega
Meredith Blackwell

A common thread in this book is symbiosis, organisms living together
in an association, the outcome of which could be neutral, positive, or

negative and that might even change from time to time. Ever since de Bary (1879)
popularized this term, we have seen the reductionist approach of science in vogue,
an approach that has been quite productive. This approach has resulted in the de-
velopment of revolutionary technologies, such as the tools of molecular biology,
which have revealed a tremendous level of biocomplexity in nature. For example,
Hermsmeier et al. (2001) found that more than 500 genes in Nicotiana attenuata
respond to attack by the lepidopteran Manduca sexta. This mind-boggling analysis
points at the need for a concerted effort aimed at understanding the biocomplexity
of insect–fungal associations. We have to start fitting the parts together in a new
puzzle that uses parts based on molecular studies. It is not just a matter of examin-
ing tri-trophic interactions or of examining how insects deal with plant trichomes,
allelochemicals, or a thick cuticle.

Finding more than 500 plant genes responding to herbivory by just one insect is
significant. We need to be aware, however, that there are organisms residing in the
insect and the plant, in addition to those found on the cuticle and on the phylloplane.
When we consider the myriad endophytes in the plant, including yeasts, bacteria,
and fungi, and how these might be influencing the plant, and consequently the in-
sect, the picture becomes even more complex. There is an enormous complexity of
interactions involving several different trophic levels.

To assess this complexity, it will be necessary to examine metagenomes in in-
sects, an approach that considers a particular insect species as a community in
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which genomes belonging to various other organisms such as yeasts, fungi, and
bacteria might be present. This concept has been used for microbial community
analyses in soil (Handelsman et al. 1998; Torsvik and Øvreås 2002), hot springs
(Barns et al. 1994), and marine environments (DeLong 1992; López-García et al.
2001), and it is based on various molecular techniques, including polymerase chain
reaction (PCR) with primers for small subunit ribosomal RNA (rDNA) (Amann
et al. 1995; Jarrell et al. 1999), gene cassette PCR (Stokes et al. 2001), and micro-
arrays (Murray et al. 2001; Zhou 2003), among others (see Torsvik et al. 1998).
These techniques allow a better understanding of the vastness of microbial com-
munity diversity, which in the past was not known simply because the microbes
could not be cultured.

What will we find when we apply these or other related techniques to insects?
Will insects reveal themselves to be reservoirs of unknown biodiversity, or will we
find that we have been close to reality in terms of knowing what is present, and that
the metagenome approach used in other systems is not applicable to insects? Using
the metagenome approach, Reed and Hafner (2002) extracted total community DNA
from chewing lice to study bacterial communities associated with the insect; their
results revealed 35 bacterial lineages and was the first study documenting bacterial
associations with chewing lice in the Trichodectidae. Ohkuma and Kudo (1996)
used mixed-population DNA from the termite Reculitermes speratus to analyze the
diversity of intestinal bacteria, revealing the presence of a wide array of previously
unknown microorganisms. These results indicate that there is likely a huge knowl-
edge gap in the breadth of insect–fungal associations that can be filled using vari-
ous molecular techniques. The insect–fungal association field is likely to become
much more complex.

It also would be interesting to find out how the “genomic islands” concept (sensu
Doolittle 2002) applies to insect-associated fungi. Are there “pathogenicity islands”
(large gene clusters correlated with virulence) or “symbiotic islands” (genes nec-
essary for symbiosis)? Can these be identified and manipulated for pest control
strategies?

Referring to molecular biology, the late Peter Medawar (1968) wrote: “It is simply
not worth arguing with anyone so obtuse as not to realize that this complex of dis-
coveries is the greatest achievement of science in the twentieth century” (p. 4). Are
there further developments in molecular tools that can be used to advance the field?
Certainly. Are there tools at present that are not being used to study insect–fungal
association studies? Obviously. We need to pursue a broader approach to under-
standing the nature of insect–fungal associations knowing that Occam’s razor will
forever be with us, but with one important caveat: From the reductionist approach
that has yielded powerful tools which in turn point at the importance of more holis-
tic studies, we must become true naturalists as our scientific ancestors once were.
It is not just a matter of being well versed in molecular biology, but also in ecol-
ogy, pathology, mycology, and entomology. Once we have put these various fields
together as individuals or, perhaps, as teams of reductionist biologists to comprise
the new naturalist of our studies, we will be able to advance at gigantic steps in our
understanding of insect–fungal associations.
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